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MANGANIN GAUGE AND REACTIVE FLOW MODELING 
STUDY OF THE SHOCK INITIATION OF PBX 9501* 

C. M. Tarver, J. W. Forbes, F. Garcia and P. A. Urtiew 

Lawrence Livermore Nutioncll Laborutory, 
P.O. Box 808, L-282, Livermore, CA 94551 

A series of lO1mm diameter gas gun experiments was fired using manganin pressure gauges embedded in the 
HMX-based explosive PBX 9501 at initial temperatures of 20°C and 50°C. Flyer plate impact velocities were 
chosen to produce impact pressure levels in PBX 9501 at which the growth of explosive reaction preceding 
detonation was measured on most of the gauges and detonation pressure profiles were recorded on some of the 
gauges placed deepest into the explosive targets. All measured pressure histories for initial temperatures of 
25°C and 50°C were essentially identical. Measured run distances to detonation at several input shock 
pressures agreed with previous results. An existing ignition and growth reactive flow computer model for 
shock initiation and detonation of PBX 9501, which was developed based on LANL embedded particle 
velocity gauge data, was tested on these pressure gauge results. The agreement was excellent, indicating that 
the embedded pressure and particle velocity gauge techniques yielded consistent results. 

INTRODUCTION 

The relative safety of high energy materials based 
on octahydro-l,3,5,7-tetranitro-1,3,5,7-tetrazocine 
(HMX) is very important. PBX 9501, which 
contains 95 weight % HMX, 2.5 weight % estane 
binder, and 2.5 weight % BDNPA/F, is a widely used 
HMX-based plastic bonded explosive. Its shock 
sensitivity has previously been studied using 
embedded particle velocity gauges (1,2) and VISAR 
at low input shock pressures (3,4). In this paper, the 
shock sensitivity of PBX 9501 at 25°C and 50°C was 
measured using embedded manganin pressure gauges 
to determine whether particle velocity measurement 
techniques agreed with pressure measurement 
techniques. The experimental records were compared 
through the use of the Ignition and Growth reactive 
flow model for PBX 9501, which had been 
previously normalized to particle velocity gauge data 
in the same input shock pressure regime (3). If this 
PBX 9501 Ignition and Growth model can calculate 
manganin pressure gauge records accurately with no 
adjustments, then the two experimental techniques 
are producing equilvalent shock initiation data. Thus 
they can be used interchangeably or in combination, 

EXPERIMENTAL 

The experimental geometry for the PBX 9501 
embedded gauge experiments is identical to those in 
previous studies (5-8). A 100- diameter, 12.5 
mm thick aluminum flyer plate impacts a target 
consisting of: a 9Omm diameter, 6mm thick 
aluminum plate; a 9Omm diameter, 2Omm thick 
PBX 9501 charge; and a 9Omm diameter, 6mm thick 
aluminum back plate. In the heated experiments, the 
heaters were placed within the aluminum plates, and 
the PBX 9501 was heated to approximately 50°C at a 
rate of 1.6Uminute. A total of three shots were 
fxed. One 25°C experiment was fired with an 
aluminum flyer velocity of 0.697 m d p s  producing 
a shock pressure of approximately 3.2 GPa. Two 
shots were fired at 50°C with aluminum flyer plate 
velocities of 0.649 and 0.8005 mm/ps, imparting 
pressures of 3.1 GPa and 4 GPa, respectively. An 
initial temperature of 50°C for PBX 9501 was used, 
because it is known that the shock sensitivity of 
HMX-based explosives increases for temperatures in 
the 150 - 170 "C regime (8), but no data was 
available in the 50°C range to which explosives may 
be subjected in hot climates and certain applications. 



REACTIVE FLOW MODELING 

The Ignition and Growth reactive flow model uses 
two Jones-Wilkins-Lee (JWL) equations of state, one 
for the unreacted explosive and another one for the 
reaction products, in the temperature dependent fom: 

p = A e-RIV + B e-R2V + oCvT/V (1) 

where p is pressure in Megabars, V is relative 
volume, T is temperature, w is the Gruneisen 
coefficient, Cv is the average heat capacity, and A, B, 
R1 and R2 are constants. The unreacted equation of 
state is fitted to the available shock Hugoniot data, 
and the product equation of state is fitted to cylinder 
test and other metal acceleration data. The reaction 
rate equation is: 

dF/dt = I(l-F~b(p/po-l-a)X+G~(l-F)cFdp~ 
OcF<F ,gmax Glmas 

where F is the fraction reacted, t is time in ps, p is 
the current density in g/cm3, po is the initial density, 
p i s  pressure in mars, and I, GI,  G2, a, b, c, d, e, 
g, x, y, and z are constants. This three term reaction 
rate law models the three stages of reaction generally 
observed during shock initiation of pressed solid 
explosives (6). The equation of state parameters for 
PBX 9501, aluminum, and Teflon, and the Ignition 
and Growth rate law parameters for PBX 9501 are 
listed in Table 1. These parameters were previously 
normalized to several particle velocity gauge 
experiments fired at Los Alamos National 
Laboratory. Sheffield et al. (1) did a careful study of 
the effect of initial density on the shock sensitivity 
of new and aged PBX 9501. The average density of 
the three PBX 9501 charges used in this study was 
1.838 g/cm3. A change in temperature from 25°C to 
50°C does not change the density significantly. The 
only change in the 50°C PBX 9501 parameters from 
the ambient parameters is a lower B value in the 
unreacted JWL equation of state so that p=O at V=l 
and To = 323°K. 

TABLE 1. Equation of State and Reaction Rate Parameters 
1. Ignition and Growth Model Parameters for PBX 9501 
TO=298"K; po =1.838 g/cm3; Shear Modulus=0.0354 Mbar; Yield Strength=0.002 Mbar 
Unreacted JWL Product JWL Reaction Rate Parameters 

B=-0.052654 Mbar B=0.5969 Mbar a=O.O e=O. 33 3 
A=7320 Mbar A=16.689 Mbar I=1.4e+ll Gz=400 

R1=14.1 R1=5.9 b=0.667 g=1.0 
R2= 1.4 1 R2=2.1 x=20.0 2=2.0 
0=0.8867 0=0.45 G1=130 Figmax = 0.3 
Cv=2.7806e-5 MbarTK Cv=l .Oe-5 Mbar/"K y=2.0 FG 1 max=O.s 

T0=50"C=323"K B=-0.055179 Mbar 
Eo=0.095 Mbar c=O.667, d=0.277 

2. Gruneisen Parameters for Inert Materials 
p = poc2p[ 1+( 1-y0/2)p-a/2p21 / [ l - ( S ~ - l ) ~ - - S ~ c ~ ~ / ( p * + 1 ) - S 3 ~ ~ / ( ~ + l ) ~ ] ~ + ( y ~  + ap)E 

where p=(p/p,)-l and E is thermal energy 

Inert po(g/cm3) c(mm/ps) S1 s2 s3 YO a 
6061-T6 A1 2.703 5.24 1.4 0.0 0.0 1.97 0.48 
Teflon 2.15 1.68 1.123 3.98 -5.8 0.59 0.0 

TABLE 2. Experimental ilyer velocities. impact pressures. and run distances to detonation 
Flyer Velocity Impact Pressure PRX YSOI Temperature Experimental Kun tu Detonation Results 
(mnilps) ((3 Pa) ( C) I)istance(n~n~) Time(p s) 
0.697 3.4 3-5 1 1  3.4 
0.649 3.0 so 13 4 .3  
0.8005 4.0 50 8 2.4  
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Figure 4. Calculated pressure histories for 25°C 
impacted by an aluminum flyer at 0.697 mrn/&s 
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Figure 5. Calculated pressure histories for 5( 
impacted by an aluminum flyer at 0.619 mm/p 

Figore 6. Calculated pressure histories for SO 
impacted by an aluminum flyer at 0.8005 m d p s  
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